

Health Systems Science in Medical Education

Edgar Pierluissi, MD Professor of Medicine

Anna Chang, MD Professor of Medicine University of California San Francisco

November 7, 2022

Congratulations and Welcome!

There are far, far better things ahead than any we leave behind – C.S. Lewis

Workshop Agenda

Hour #1

- 1. Why are you doing Health Systems Science education? (10 min)
- 2. Introduction and Overview (10 min)
- UCSF Experience: Early Learners in Health Systems (20 min)
- 4. Your Reflections, Next Steps, Concerns (10 min)
- 5. Break (10 min)

Hour #2

- 1. Small Group A (20 min)
- Small Group B (20 min)
- 3. Closing Discussion (20 min)

66

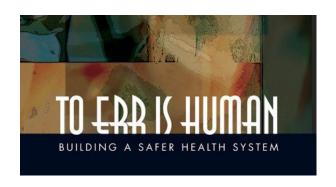
Explain it to a friend over a cup of coffee or tea...

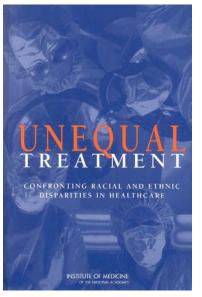
Why are you working to infuse health systems science in medical education?

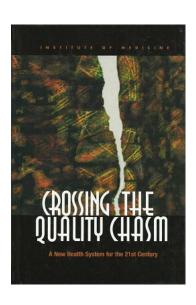
Please share with a partner (7 min)

Please share with all of us (3 min)

I (or my colleague) chose to do this work because...


Health Systems Science in Medical Education: Rationale


Edgar Pierluissi, MD



The Problem: U.S. Health Care System

Despite being the costliest in the world; quality, safety, disparity, patient, and provider experience are lower than expected

Access

Rank (highest to lowest)	1	2	3	4	5	6	7	8	9	10	11
Access, %											
Able to get same- or next- day appointment ^a	NLD 77	Australia 67	UK 57	France 56	Germany 53	US 51	Sweden 49	Canada 43	CHE NA	Denmark NA	Japan NA

JAMA. 2018;319(10):1024-1039

Rank (Highest to Lowest)

of people with asthma

Clinical Outcomes

5

4

6

7

8

9

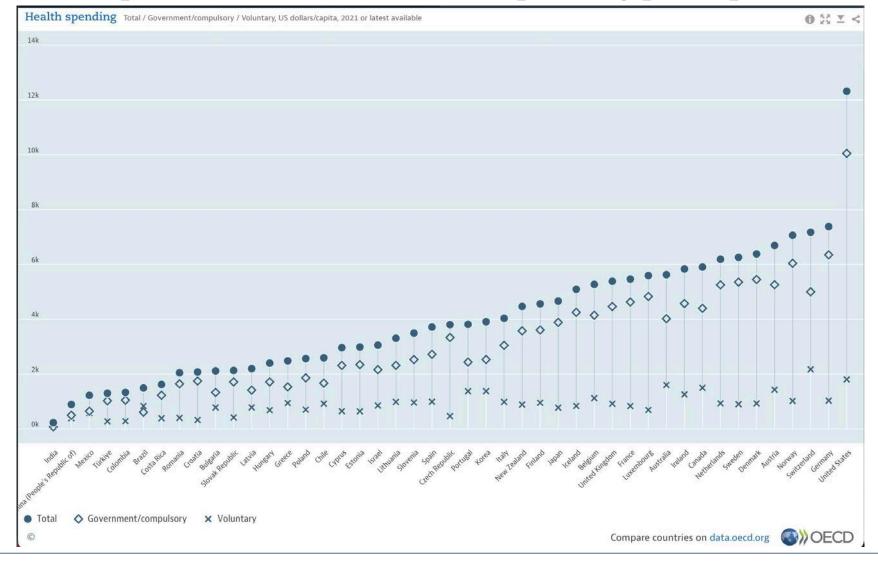
10

11

Clinical Outcomes											
30d Stroke Mortality per 1000 patients	Canada	Sweden	Australia	UK	France	CHE	Germany	US	NLD	Denmark	Japan
	10	9.6	9.3	9.2	7.9	6.9	6.4	4.2	NA	NA	NA
30d Mortality per 1000 patients with acute myocardial infarction	Germany	Sweden	CHE	UK	France	Canada	US	Australia	NLD	Denmark	Japan
	8.7	8.3	7.7	7.6	7.2	6.7	5.5	4.1	NA	NA	NA
Rank (Highest to Lowest)	1	2	3	4	5	6	7	8	9	10	11
Avoidable Hospitalizations											
Diabetes hospitalizations as a ratio of people with diabetes	Japan	Australia	Germany	US	Sweden	Denmar	rk UK	Canada	France	NLD	CHE
	2.8	2.8	2.4	2	1.9	1.8	1.7	1.3	1.2	1.2	1.2
Asthma hospitalizations as a ratio of people with asthma	US	UK	France	Denmark	Germany	NLD	Austral	ia CHE	Sweden	Japan	Canada
	1.2	1.0	0.8	0.8	0.7	0.7	0.6	0.4	0.3	0.3	0.2

1

2


3

Patient Perceptions

Perceptions, %											
System works well	Germany	CHE	France	UK	Sweden	Australia	Canada	US	NLD	Denmark	Japan
	60	58	54	44	44	44	35	19	NA	NA	NA

Developed Countries Healthcare Spending per capita

If we do nothing to slow these skyrocketing costs, we will eventually be spending more on Medicare and Medicaid than every other government program combined. Put simply, our health care problem is our deficit problem. Nothing else even comes close.

Sep 9, 2009

Drivers for Health Systems Science in Medical Student Education

- Quality
- 2. Cost
- 3. Patient Complexity

Why Health Systems Science?

1. Quality of Care Problem

There are many areas where American medicine doesn't deliver care that we know can be achieved, although there are some areas of excellence.

Why Health Systems Science?

2. Cost Problem

The U.S. spends more, by far, on health care than other wealthy countries

Why Health Systems Science?

3. Patient Complexity Problem

The number of patients with complex medical and psychosocial factors is increasing

These patients disproportionately account for poor health outcomes and health care costs

What do the problems of quality, complexity, and cost have to do with medical education?

By failing to address these issues in medical education, we contribute to them

Medical Education Consensus

Clinical Review & Education Special Communication Medical Education Part of the Problem and Part of the Solution Perspective

Medical Education and Health Care Delivery: A Call to Better Align Goals and Purposes

David P. Sklar, MD, Paul A. Hemmer, MD, MPH, and Steven J. Durning, MD, PhD

Catherine Rein's Lucey, MD

Transforming From Centers of Learning to Learning Health Systems The Challenge for Academic Health Centers

Kevin Grumbach, MD Department of Family Medicine, University of achieve the triple aims of better patient experience, bet- already do not adequately accommodate the other ter health, and affordability. Although all health sys-

Health care organizations face intensifying pressure to nities who voice concern that clinical operations

Preparing Medical Students to Improve Health Care

Preparing Medical Students for the Continual Improvement of Health and Health Care: Abraham Flexner and the New "Public Interest"

Donald M. Berwick, MD, MPP, and Jonathan A. Finkelstein, MD, MPH

Health Systems Science: The "Broccoli" of **Undergraduate Medical Education**

Jed D. Gonzalo, MD, MSc, and Greg Ogrinc, MD, MS

Value-Added Medical Education: Engaging Future Doctors to Transform Health Care Delivery Today

Steven Y. Lin, MD¹, Erika Schillinger, MD², and David M. Irbv. PhD³

Teaching Systems Improvement to Early Medical Students: Strategies and Lessons Learned

Monica W. Harbell, MD, Descartes Li, MD, Christy Boscardin, PhD, Edgar Pierluissi, MD, and Karen E. Hauer, MD, PhD

TRAINING TOMORROW'S DOCTORS

The Medical Education Mission of Academic Health Centers

A Report of The Commonwealth Fund Task Force on Academic Health Centers

April 2002

Validity of the Health Systems Science Examination: Relationship **Between Examinee Performance** and Time of Training

American Journal of Medical Quality 2020, Vol. 35(1) 63–69 © The Author(s) 2019 Article reuse guidelines: sagepub.com/portrals-permissions DOI: 10.1177/1062866419953349 **SSAGE**

Medical Quality

Michael Dekhtyar, BA O, Linette P. Ross, MA2, Jean D'Angelo, BA2, Jeanne Guernsey, MA2, Karen E. Hauer, MD, PhD3, Luan Lawson, MD, MAEd4, Martin V. Pusic, MD, PhD5, and Richard E. Hawkins, MD1.6

Definition

Health systems science is the study of how health care is delivered.

It seeks to improve the quality of health care for patients and populations.

- American Medical Association

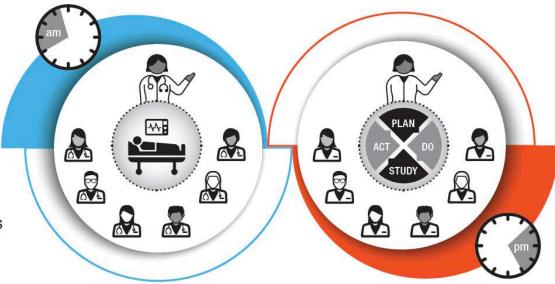
UCSF Experience: Early Learners

Anna Chang, MD

Health Systems Improvement

Direct Patient Care

Interprofessional Collaboration


UCSF Clinical Microsystems Clerkship (CMC) for MS1 and MS2s

UCSF Clinical Microsystems Clerkship Day (MS1 & MS2)

AM / Direct Patient Care:

- Medical history
- Physical examination
- Clinical reasoning
- Patient communication
- Notes and presentations

PM / Health Systems Improvement

- · Identify a problem
- Set concrete goals
- Perform a gap analysis
- Conduct interventions
- Measure outcomes

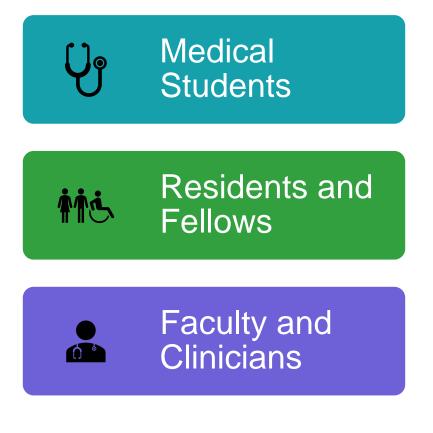
Design Principles: UCSF Clinical Microsystems Clerkship

- All MS1s and MS2s (n=150 per year) immerse in three clinical systems for health systems science
- Required (not elective)
- Experiential workplace learning (not didactic)
- Integrated with clinical and basic sciences
- Small group learning communities: physicians, students, patients, and interprofessional clinicians (nurses, etc.)
- Students participate in authentic roles in health system improvement aligned with health systems priorities
- Students demonstrate learning in assessments

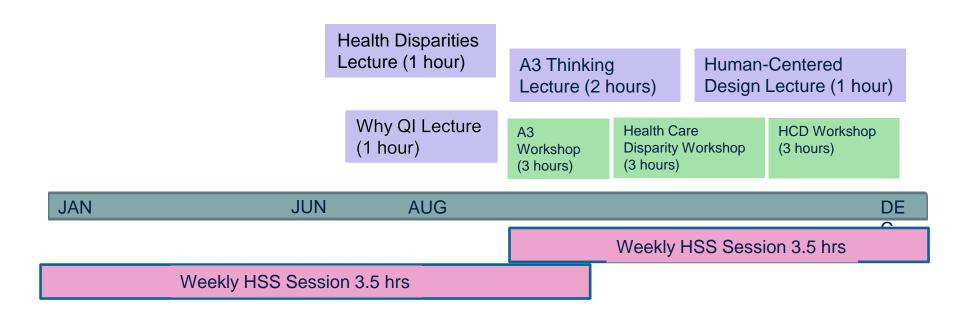
4 Implementation Components: UCSF CMC

EDUCATION / HEALTH SYSTEM PARTNERSHIP

HEALTH SYSTEMS CURRICULUM


FACULTY DEVELOPMENT

LEANER ASSESSMENT AND EVALUATION


1. Education/Clinical Partnership: Learning Health System

2. Curriculum Example: Health Systems Improvement

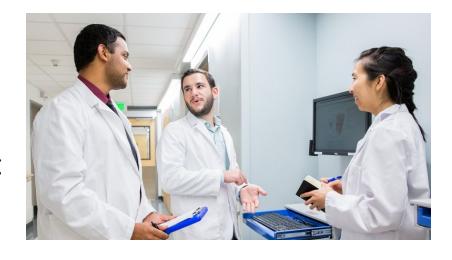
3. Faculty Development: UCSF Student Coaching Program

- 55 physician coaches
- 6 students per academic year x 2, alternating years
- Coaching, advising, teaching clinical skills, and guiding health systems improvement projects

4. Learner Assessment Example: Health Systems Improvement

UCSF School of Medicine / Clinical Microsystems Clerkship (CMC)

Systems Improvement Template Site: UCSF / SFVAMC / ZSFG Coach: Date: Student Team: Experiments: What countermeasures do you propose and why? Background: What problem are you talking about and why? 1. Problem 5. Experiments Current Conditions: Where do things stand now? Action Plan: How will you implement? 2. Current State 6. Action Plan **Problem Statement:** Target Conditions (Goals): What specific outcome is desired? Study, Reflect, Plan Next Steps: How will you assure ongoing PDCA? 3. Target 7. Reflection Gap Analysis: Why does the problem exist? 4. Gap Analysis


UCSF Outcomes: Early Learners in Health Systems

Edgar Pierluissi, MD

Outcome: UCSF CMC Student Projects

- To date, 776 students completed
 - 258 projects
 - 3 health systems
 - 15 departments
- 10,000 hours of student effort each year over 16 months.
- 72% projects improved microsystem

Outcome: UCSF CMC Sample Projects

	Project Aim (Fall 2017)	Project Outcome (Fall 2018)
	Academic Medica	l Center
Primary	Reduce disparities in hypertension	Increased percentage of patients with at-
Care	control for Black patients	goal blood pressures by 38%
Gynecologic	Improve safety of opiate use after	Decreased prescriptions for discharge
Oncology	minimally-invasive surgery	opiates by 30%
Neurology	Improve access of multiple sclerosis	Increased provider knowledge of pelvic
	neurogenic bladder treatment	floor physical therapy referral to 80%
Endocrine	Improve experience of post-	Increased patient understanding of
Surgery	surgical discharge process	discharge instructions in 5/5 patients
Pediatrics	Improve experience by reducing	Decreased average vaccination wait time
	clinic wait times	from 9 to 5 minutes
	Public Safety Net Hed	alth System
Psychiatry	Decrease readmissions after	Achieved 64% attendance at first
	discharge from inpatient psychiatry	outpatient mental health appointment
Obstetrics	Improve safety of vaginal and	Implemented quantitative blood loss
	cesarian obstetric hemorrhage	measurement in 84% of deliveries
Emergency	Improve quality in acute stroke	Achieved goal door-to-needle time of
Department	treatment with thrombolysis	<45 min for 84% of stroke patients
Pediatrics	Improve quality in management of	Improved smoking cessation intervention
	second-hand smoke for children	implementation rate from 36% to 88%
Primary	Improve disparities in depression	Increased screening rate to 63% for non-
Care	screening	English speaking and visually-impaired

Outcome: UCSF CMC Student Quotes

Quality improvement is always a goal when it comes to patient care. In clerkship and residency, I will likely see how I can use my power and experience to change parts of the system

I learned a lot in this project and will definitely talk about my CMC project in my residency application.

This project was a really good way of reminding me there's more than just the one patient in front of us. When you're treating one patient, you're really treating the system

Outcomes: Student Satisfaction & Professional Identity

Student Satisfaction:	Mean Rating (SD; N=50)
Overall quality of the CMC	4.10 (SD 0.92)
Value to development as a physician	4.14 (SD 0.86)

Professional Identity:	Mean Rating (SD; N=55) ^a
I believe that clinical skills and health systems knowledge are	4.73 (SD 0.48)
both important to patient experience and clinical outcomes	
A physician needs to have both clinical skills and health	4.40 (SD 0.63)
systems knowledge to be successful	

Scale of 1 (poor) to 5 (excellent)

Outcomes: Student Assessment

	MS1 Assessments (N=152)	MS2 Assessments (N=152)			
Direct Patient Care	Clinical Skills Examinations				
	Mean Perc	entage (SD) ^a			
Patient Communication	90% (SD 5.3)	86% (SD 5.7)			
Medical History	85% (SD 5.9)	96% (SD 4.6)			
Physical Examination	78% (SD 6.2)	70% (SD 7.4)			
Interprofessional Collaboration	Interprofessi	onal Feedback			
	Percentage of All Students ^b				
Communication and Teamwork	98%	Assessed as MS1s			
Health Systems Improvement	Health Systems Improvement Knowledge Tests				
	Percentage of All Students ^c				
QIKAT-R	80%	Assessed as MS1s			
	Health Systems Improvement Project Skills				
	Percentage of All Students ^c				
Project: Problem and Aims	90%	Assessed as MS1s			
Project: Gap Analysis	93%	Assessed as MS1s			
Project: Interventions	Assessed as MS2s	88%			
Project: Reflections	Assessed as MS2s	100%			

Outcome: UCSF CMC on GME Transition

Career Development:	Percentage of Students ^b
I listed my CMC health systems improvement project in my	85% Yes (N=44)
residency application curriculum vitae	
I disseminated my CMC health systems improvement project	54% Yes (N=28)
(e.g. as a local or national poster or oral presentation, or a paper	
in a journal)	
I discussed my CMC health systems improvement project in my	31% Yes (N=16)
residency personal statement or interview	

Example: UCSF CMC Scholarship Dissemination

OLIALITY IMPROVEMENT

A Student-Run Outreach and Vaccine Administration Clinic Provides Longitudinal Workplace-Based Learning and Improves Patient Care

Alexander F. Haddad*, Lillian Lai*, Jason Parad*, Lakshmipriya Subbaraj*, Sarah W. Takimoto*, Tenessa MacKenzie MD

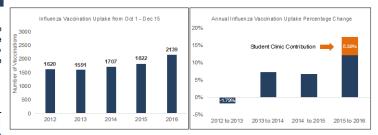
University of California, San Francisco School of Medicine
UCSF Family Medicine at Lakeshore
"These authors contributed equally to this work."

BACKGROUND

- UCSF School of Medicine's new educational curriculum features the clinical microsystem clerkship (CMC), which groups first-year students into teams of 5-6 to learn systems quality improvement and clinical skills through a longitudinal workplace-based experience.
- Five students assigned to UCSF Family Medicine at Lakeshore piloted and refined a student-run vaccination clinic by implementing Plan-Do-Study-Act (PDSA) cycles.
- The clinic provided the opportunity to meaningfully increase influenza vaccination uptake and progress toward mastery in all UCSF MD graduation competencies.*

Patient Care	Professionalism
Medical Knowledge	Systems-Based Practice
Practice-based Learning & Improvement	Interprofessional Collaboration
Interpersonal & Communication Skills	*Based on competencies adopted by the Accreditation Council for Graduate Medical Education

METHODS


Administrative Preparation

A faculty physician at Lakeshore worked with UCSF leadership to approve the clinic and student training process. Students were trained in vaccination administration by reviewing CDC online vaccine modules, completing a UCSF nursing vaccine administration certificate course, and receiving hands-on training and initial supervision from nursing and physician staff.

Daily Activities

The clinic ran for 3 hours each week during influenza season. For each patient visit, students reviewed the electronic medical record and checked for health maintenance notifications. They then administered the recommended vaccines and addressed additional patient concerns. Students also attended to clinic workflow and conducted PDSA cycles for continual improvement.

Date	Plan	Do	Study	Act
Problem: Not kno	owing when patients arrive leads to	inefficient visits		
10/13/16	Design method to indicate patient arrival	Adapt current patient flow notification "dot" system at Lakeshore to electronic vaccine clinic schedule	Accurate dots improved worldlow efficiency	Adopt
Problem: Pre-on	dering vaccines for all scheduled p	atients results in open encounters for n	o-show patients	
10/20/16	Implement system to reduce time wasted on ordering and canceling unnecessary vaccines	Write order only upon patient arrival	⊟iminated unnecessary opening and closing of patient encounters	Adopt
Problem: Additio	nal coordination needed between s	tudents and attending physician		
10/20/16	Adapt dot system to note ongoing status of patient encounter	Implement color-coded dot system	Allowed for faster closing of encounters	Adopt
Problem: Lack of	data on patient vaccination habits	may hinder optimal clinic programming		
10/27/16	Formulate questions to ask patients about their vaccination habits	Use smartphrase: ".lkscmcvaccine" to prompt standardized list of questions on EMR	Smartphrase elucidated patient habits, which confirmed value of vaccination clinic within family medicine practice	Adopt
Problem: Confus	ion over student-patient pairings			
10/27/16	Create system to track student intake of patients	Input initials of student who is seeing the patient on schedule	Initials system reduced confusion	Adopt
Problem: Subma	ximal student participation at begin	ning of clinic due to sequential patient	visits	
11/3/16	Start clinic with overlapping appointments	Schedule two patients at 8:20 AM and 8:40 AM	Overlapping appointments put undue burden on attending physician	Need to further adjust timing o schedule

From 2015 to 2016, influenza vaccination uptake increased by 17.4%. A total of 98 vaccinations were given through the student vaccination clinic, which constitutes the 5.38% increase.

EDUCATIONAL C	DUTCOMES

	UCSF MD Competencies	Learning Experiences
	Patient Care	Provided vaccination for illness prevention; obtained focused patient information to screen for vaccination contraindications; performed injection with attention to patient comfort; documented patient encounter in electronic health record
	Medical Knowledge	Learned the immunology, epidemiology, and rationale of vaccination; reviewed age-appropriate preventive care including cancer screenings, vaccinations, and blood pressure management
	Practice-based Learning & Improvement	Accessed and applied national vaccination guidelines; selected proper needle gauge, injection location, and dosage based on patient age and vaccine type; addressed other health maintenance issues during vaccine clinic visit
	Interpersonal & Communication Skills	Established rapport and communicated effectively with patients and families of diverse cultures and backgrounds; elicited and addressed concerns over vaccination
	Professionalism	Respected patient privacy by maintaining confidentiality of patient information; navigated the balance of autonomy and need for supervision; acknowledged errors and limits of expertise
	Interprofessional Collaboration	Conferred with nurses, medical assistants, and clerical staff about room availability, patient flow, stock supplies, and equipment; contacted interpreters for language translation
	Systems-Based Practice	Implemented the student-run clinic as a quality improvement project to increase vaccination uptake; tested changes using FDSA cycles

CONCLUSIONS

- The student-run vaccination clinic increased influenza vaccination uptake by 5.38% from 2015 to 2016
- The student-run vaccination clinic provided students an early educational opportunity to:
 - · Enhance all 7 MD competencies
 - Make meaningful quality improvements to clinic workflow
 - · Increase uptake of flu vaccination and thus improve patient care

FUTURE DIRECTIONS

- Expand vaccination clinic to include HPV and other routine childhood vaccines
- Implement objective measures to evaluate vaccine clinic's alignment with MD competencies and impact on student learning

Sustainability

- Present benefits of vaccination clinic to UCSF School of Medicine administration to garner support for its continued operation
- Compile handbook of vaccination clinic practices to aid students in future implementation of the clinic
- Petition UCSF administration to allow use of standing order for influenza vaccines to increase clinic efficiency



Please share with everyone (10 min)

As you look ahead to engaging learners in your health systems...,

What are your reflections, next steps, concerns?

Small Groups (20 min, then switch) Best practices in working with...

Group A (Dr. Pierluissi)

Engaging health system leaders and clinicians

...health system leaders who want to understand the return on investment for HSS

... clinicians who view HSS as "something you learn on the job, like I did"

Group B (Dr. Chang)

Engaging educators/learners

...educators who feel the full curriculum and struggle to add HSS teaching, assessment, or evaluation.

... learners who do not see value of HSS in exams or residency applications

Closing Discussion and Questions

Thank you!

Anna.chang@ucsf.edu

Edgar.pierluissi@ucsf.edu